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ABSTRACT

Breast density classification is an essential part of breast can-
cer screening. Although a lot of prior work considered this
problem as a task for learning algorithms, to our knowledge,
all of them used small and not clinically realistic data both for
training and evaluation of their models. In this work, we ex-
plore the limits of this task with a data set coming from over
200,000 breast cancer screening exams. We use this data to
train and evaluate a strong convolutional neural network clas-
sifier. In a reader study, we find that our model can perform
this task comparably to a human expert.

Index Terms— convolutional neural networks, deep
learning, mammography, breast cancer screening, breast den-
sity

1. INTRODUCTION

Although convolutional neural networks (CNNs) are highly
successful in a variety of applications [1], they have received
relatively little attention in medical image analysis until re-
cently. This has been primarily due to the lack of availability
of large public data sets. One of the significant areas for de-
velopment in medical image analysis is breast cancer screen-
ing. Even though performing full diagnosis by the means of a
neural network remains a challenge [2], elements of achieving
this wider goal are feasible with current state of the art meth-
ods. In this paper, we explore one of them, namely breast
density classification.

Mammographic density reflects the composition of fi-
broglandular and fat tissue of a breast as seen on a mam-
mogram. In clinical practice in the United States, breast
density is qualitatively categorized into four types: a) almost
entirely fatty, b) scattered areas of fibroglandular density, c)
heterogeneously dense and d) extremely dense. The last two
categories are considered “dense” [3]]. Dense breast tissue is
common and is the typical fibroglandular breast tissue pattern
in young women. About 50% of women over the age of 40

years have dense breasts. After menopause the breasts tend
to contain more fat as the glands involute. Dense breast tissue
reduces the effectiveness of mammography because it has a
“masking effect” and will hide an underlying tumor. Studies
also consistently show an increased risk of developing breast
cancer in women with high mammographic density compared
with women with low mammographic density.

Masking of cancer by dense tissue has become a political
issue with women requesting supplemental tests if they have
dense breasts. There are currently states in the US that man-
date women receive notification about breast density with
their mammography results. Due to significant variability
in the radiologist’ assessment of breast density, computer
methods have been developed to improve consistency. One of
them, Cumulus, is a software program requiring manual in-
put to outline and measure the area of breast tissue relative to
overall breast area [4}, |3]]. Recently, automated programs have
been developed that measure percent density as a function of
area or volume. Several automated density programs have
demonstrated high reproducibility [6] and correlation with
volumetric density as measured by MRI [7]. However, these
commercially available products do not involve any learning,
therefore they lack the flexibility and robustness of learning
models. On the other hand, all learning models in literature
were trained and tested with small amounts of data. Hence
there still is a need to have a precise automated assessment of
breast density based on learning directly from data.

2. DATA

We used a clinically realistic data set of over 200,000 screen-
ing mammography exams, each containing at least four im-
ages corresponding to the standard four views used in screen-
ing mammography [2]]. For the purposes of this research, we
supplemented this data with labels corresponding to breast
density, which we automatically extracted from the textual
reports associated with the exams in our data set. A small
number of exams in our original data did not have the in-



formation on breast density in the corresponding textual re-
port. We excluded 519 such exams from the data set, which
left us with the total of 201,179 exams, containing 19,939
class 0, 85,665 class 1, 83,852 class 2 and 11,723 class 3 ex-
ams. Interestingly, analysis of our data confirms that women
who were assigned overall BI-RADS 0 (“incomplete”) label
in their screening mammography tend to have denser breasts
than the ones who were assigned BI-RADS 1 (“normal”) and

BI-RADS 2 (“benign”) labels (cf. [Table I).

scattered areas of
fibroglandular density (1)

almost entirely fatty (0)

o LMLO]

=

heterogeneously dense (2)

extremely dense (3)

Fig. 1. Examples of the four breast density classes.

Table 1. Distribution of labels in our data set. The numbers
in the bottom row are numbers of exams falling into different
breast density categories. The numbers in the rightmost col-
umn are the numbers of exams falling into different overall
BI-RADS classes.

breast density category
0 1 2 3
A 1702 | 9607 | 12656 | 1839 | 25804
§ 1| 9803 | 40060 | 37167 | 5157 | 92187
= 8434 | 35998 | 34029 | 4727 | 83188
19939 | 85665 | 83852 | 11723

3. MODELS

3.1. Baselines

The most common method to perform the task of breast den-
sity prediction in literature is training a classifier with features
based on histograms of pixel intensity in the image [8]]. This
simple method is surprisingly effective. The reason why it
works can be easily understood. The difference between pixel
intensity occurs because mammograms with a predominance
of fat appear darker than the ones with a fibroglandular tissue.
This is because this type of tissue absorbs much of the radi-
ation whereas the adipose tissue allows the radiation to get
through more easily.

In this work, we used such a model as a baseline. We
took pixel intensity histograms as features and used softmax
regression as a classifier. For each of the four standard views
(L-CC, R-CC, L-MLO and R-MLO) separately, we split in-
tensity values into a set of predefined bins, we normalized
them such that frequencies of different bins sum to one and
then concatenate such feature vectors. Additionally, to make
this model more flexible, we also trained a version of it with
an extra hidden layer with 100 hidden units between the in-
put and the softmax regression layer. The hidden layer used
rectifier linear function as an activation function.

3.2. Deep convolutional neural network

We used a multi-column deep convolutional neural network
of an architecture loosely inspired by the earlier work of
Simonyan et al. [9]. The input to the network is four
2600 x 2000 images corresponding to the standard views used
in screening mammography. It is very similar to the archi-
tecture in [2] with the exception of the number of the outputs
in the softmax layer, since the breast density classification is
a four-way classification problem (and not a three-way clas-
sification problem as the overall BI-RADS classification).
We keep the same values of the hyperparameters too. An

overview of our architecture is shown in

Classifier p(y|x)

Fully connected layer (1024 hidden units)

DCN [ DCN [ DCN [ DCN
L-CC || R-CC [ L-MLO ][ R-MLO

| |
| |
] Concatenation (256 x4 dim) |
| |
| |

Fig. 2. An overview of the structure of the convolutional neu-
ral network used in our experiments. DCN in the figure above
denotes a series of convolutional and pooling layers. L-CC,
R-CC, L-MLO and R-MLO refer to inputs corresponding to
the four standard views in screening mammography.



4. EXPERIMENTS

We sort the patients according to the date of their latest exam
and divide them into training (first 80%), validation (next
10%) and test (last 10%) sets. For the test phase, we only
keep the most recent exam for each patient. This way of
partitioning the data allows us to estimate performance of our
classifiers on future data accurately. During experimentation,
we follow the experimental protocol in [2]], otherwise we state
it explicitly when we deviate from it. In all experiments, we
use data augmentation only during training. During valida-
tion and test phases all augmentations are off. For all models,
we picked the best epoch according to the accuracy on the
validation set.

In the baseline model based on histogram features, we use
the Adam algorithm with the initial learning rate of 10~3. We
tuned the number of bins of pixel intensity histogram, using
the validation data to select between 10, 20, 50 and 100.

4.1. Evaluation metrics

Our primary metric in this work is the standard classification
accuracy. As the levels of breast density correspond to rela-
tive increases in the amount of fibroglandular tissue, two con-
secutive labels can be confused even by an experienced radi-
ologist. This is why we also considered top-k accuracy. In
this metric we consider a prediction is correct if the ground
truth is among the k& most likely labels predicted. Top-k er-
ror is currently a popular performance measure on large scale
image classification benchmarks such as ImageNet and Places
[10]]. Additionally, we also considered accuracy only between
the two superclasses: “dense” (classes 2 and 3) versus “not
dense” (classes O and 1).

Secondly, we evaluate our models with respect to the area
under the ROC curve (AUC), which is widely used for mea-
suring the predictive accuracy of binary classification mod-
els. This metric indicates the relation between the true posi-
tive rate and false positive rate when varying the classification
threshold. As AUC can only be computed for binary classi-
fication, we compute AUCs for all four binary problems of
distinguishing between one of the density categories and the
rest of the density categories, and then take the macro aver-
age, abbreviated as macAUC.

4.2. Impact of the size of the data set

To explore the effect of data set scale, we trained separate net-
works on training sets of different sizes; 100%, 10% and 1%
of the original training set. The results are shown in
Interestingly, even though training with more data increases
performance in all metrics, the difference is not large. In
we show the ROC curves for the model trained with
100% of the data.

Table 2. Performance of our CNNs. The * symbol in the
leftmost column indicates that a model was initialized using
weights of a previously trained overall BI-RADS classifier

(cf. [subsection 4.3)).

data macAUC | top-1 | top-2 | top-3 | superclass
1% 0.888 0.729 | 0.967 | 0.998 | 0.849
10% 0.907 0.745 | 0.976 | 0.999 | 0.856
100% | 0.916 0.767 | 0.982 | 0.999 | 0.865
*1% 0.892 0.733 | 0.974 | 0.998 | 0.848
*10% | 0.909 0.753 | 0.980 | 0.998 | 0.856
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Fig. 3. ROC curves for all four classes. The classes 1 and
2 are the hardest for a neural network to distinguish from
the rest. The AUC values are 0.955, 0.888, 0.907, 0.960 for
classes 0, 1, 2, 3 respectively.

4.3. Transferring knowledge from BIRADS classifier

Transfer learning aims to transfer knowledge between related
source and target domains [11]. In computer vision, exam-
ples of transfer learning include [[12} 13} [14]]. The main idea
of this technique is to overcome the deficit of training sam-
ples by adapting strong classifiers trained for another, related
but not identical, task. Considering the amount of parame-
ters in the CNN and the correlation between breast density
and overall BI-RADS (cf. [Table I)), we applied the idea of
transfer learning to accelerate learning of our breast density
prediction network. To achieve that, we use the weights of
our model previously trained for breast cancer screening [2]
to initialize the parameters of the network trained for breast
density prediction. The two networks have an identical archi-
tecture, with the exception of the softmax layer. This layer of
the network trained for breast density prediction is initialized
randomly using the recipe from [[15].

The models trained with such initialization perform bet-
ter than their counterparts, trained from scratch in almost all
metrics (cf. [Table 2)), however, only by a small margin. In-
triguingly, models initialized with parameters of a previously
trained overall BI-RADS classifier achieve the best perfor-



mance in much fewer numbers of training epochs: 20 instead
of 50 when using 1% of the original training data 15 instead
of 25 when using 10% of the original training data.

4.4. Baseline results

Finally, we trained the baselines based on histograms of pixel
intensity. Both versions of the baseline model are trained with
10% of the original training set. The best baseline model
without the hidden layer is the one with 20 bins. It achieved
0.832 of macAUC, 67.9% of top-1 accuracy, 90.9% of top-2
accuracy, 99.4% of top-3 accuracy and 81.1% in distinguish-
ing between the “dense” and “not dense” superclasses. The
model using 10 bins is the best one for the version with one
hidden layer. It achieved 0.842 of macAUC, 69.4% of top-1
accuracy, 90.8% of top-2 accuracy, 99.2% of top-3 accuracy
and 82.5% accuracy for superclass classification.

5. COMPARISON TO HUMAN PERFORMANCE

To understand what the limit of performance possible to
achieve on this task is, we conducted a reader study with
human experts with different levels of experience. The three
participants in our reader study were: a medical student (S),
aradiology resident (R) and an attending radiologist (A). The
experts were all shown the same 100 exams randomly drawn
from the test set, each with at least four images corresponding
to the standard views used in screening mammography. For
each exam, the experts were asked to rank the breast density
classes from the most likely to the least likely according to
their judgement. The results of this experiment are shown in
Additionally, we computed analogous values with
only two classes instead of the original four: dense breasts
(original classes 2 and 3) and not dense breasts (original
classes 0 and 1). The results of this experiment are shown in

Both human experts and learning models achieve a fair
agreement with the labels in the data. Note that the agreement
between the predictions of our model and the labels in the
data are of similar magnitude to the agreement between the
humans themselves.

We also compared our best CNN model to an average of
the predictions of human experts. We did that by treating pre-
dictions of experts as one-hot vectors and averaging them. In
this experiment the humans achieved macAUC of 0.892 (class
0: 0.960, class 1: 0.812, class 2: 0.807 and class 3: 0.990),
while the CNN achieved macAUC of 0.934 (class 0: 0.971,
class 1: 0.859, class 2: 0.905 and class 3: 1.000).

6. RELATED WORK

Many previous approaches (cf. Table 2 in [16] for a com-
prehensive review) for this task involve two separate steps
of feature extraction and classification. Carneiro et al. [[17]

Table 3. Agreement (Cohen’s kappa) in choosing the most
likely class between different readers (S, R, A), our neural
network (N), our baseline (H) and labels in the data set (L).

[CT N HJ]S ][R A

L 0.61 | 039 | 041 | 0.55 | 0.39
N 0.58 | 0.53 | 0.60 | 0.48
H 0.28 | 037 | 0.34
S 0.65 | 0.48
R 0.43

Table 4. Agreement (Cohen’s kappa) in distinguishing be-
tween dense breasts (classes 2 and 3) and not dense (classes 0
and 1) between different readers (S, R, A), our neural network
(N), our baseline (H) and labels in the data set (L).

[T N[ H ]S ]| R]A

L 0.65 | 0.50 | 0.50 | 0.73 | 0.46
N 0.72 | 0.62 | 0.83 | 0.57
H 048 | 0.69 | 048
S 0.69 | 0.64
R 0.60

use histograms and Haralick texture descriptors as an input
to a multilayer perceptron. In a similar vein of work, Ku-
mar et al. [16] develop an ensemble of six multilayer per-
ceptron networks trained with GLCM mean features. The
approaches by Thomaz et al [18]] and Fonseca et al [19] ap-
ply convolutional neural network too, however, only to ex-
tract features for another classification model (MLP and SVM
respectively). Additionally, their results are obtained with a
much smaller dataset (less than one thousand exams) of low
resolution images. To the best of our knowledge, our work is
the first end-to-end four-class breast density classifier using
supervised deep convolutional neural network on multi-view
mammography images. Importantly, we trained and evalu-
ated our models on a diverse clinically realistic data set of
high resolution images, approximately two orders of magni-
tude larger than any previous work we are aware of.

7. CONCLUSIONS

In this work, we trained a deep convolutional neural network
classifier using a data set of unprecedented size for the task of
breast density classification. The level of agreement between
the trained classifier and the classes in the data was found to
be similar to that between the human experts and the classes
in the data, as well as among the human experts themselves.
This result strongly suggests that the proposed classifier may
have significant clinical relevance, as it provides quantitative,
reproducible prediction, while there is often poor intra-reader
and inter-reader correlation in the qualitative assessment of
breast density tissue, as was observed in our reader study.
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